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We consider the dependence of the electron transfer in photosynthetic complexes on correlation
properties of random fluctuations of the protein environment. The electron subsystem is modeled by
a finite network of connected electron (exciton) sites. The fluctuations of the protein environment
are modeled by random telegraph processes, which act either collectively (correlated) or indepen-
dently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear
differential equations with constant coefficients, for the average density matrix elements and for
their first moments. Under some conditions, we obtain analytic expressions for the electron transfer
rates. We compare the correlated and uncorrelated regimes, and demonstrated numerically that the
uncorrelated fluctuations of the protein environment can, under some conditions, either increase or
decrease the electron transfer rates.

PACS numbers: 03.65.Yz, 03.67.Hk,75.10.Jm,74.50.+r
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I. INTRODUCTION

In a photosynthetic organism, sunlight is ab-
sorbed in the light-harvesting complex (LHC)
or antenna, by a light-sensitive (chlorophyll or
carotenoid) molecule. This is the first step
in transforming solar energy into electron en-
ergy in the form of the exciton. This ex-
citon travels through many connected sites
(pigments) of the antenna complex, and fi-
nally reaches the reaction center (RC), where
charge separation and chemical reactions take
place. (See, for example, [1, 2], and refer-
ences therein.) The timescale of the primary
processes of electron (exciton) transfer (ET)
and charge separation are very fast, tprime ≈
1 − 3ps. There are two major theoretical chal-
lenges in describing these primary processes.
The first problem is that the constant of in-
teraction, λn, between the electron site, n,
and the protein environment is usually not
small. Indeed, the well-known Marcus formula
for the ET rate, kda, between the donor and
the acceptor, under the influence of the collec-
tive protein thermal fluctuations, has the form
[3, 4]: kda = (2π|Vda|2/

√
4πεrT ) exp[−(ε −

εr)
2/4kBTεr]. Here ε is the difference between
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†Electronic address: gpb@lanl.gov

the donor and the acceptor site energies; Vda

is the matrix element of the donor-acceptor in-
teraction, T is the absolute temperature; kB
is the Boltzmann constant; and εr is the so-
called reconstruction energy, εr ∝ λ2. As one
can see, the interaction constant, λ, occurs in
the denominators of both the pre-exponential
factor and in the exponent. This result cannot
be obtained by using standard perturbative ap-
proaches by expanding the initial expressions in
a power series in the interaction constant, λ. It
is known that the Marcus formula is derived
in the high-temperature limit. But the com-
plete set of conditions for the applicability of
the Marcus-type formula for complex biological
networks with many sites is not known. Then,
the first mathematical problem of dealing with
ET in photosynthetic complexes is that there
does not exist a closed system of equations
(exact or approximate, but derived under con-
trolled conditions) to deal with the ET pro-
cesses. Indeed, the derivation of the equation
for the reduced density matrix requires an av-
eraging over the variables of the noisy protein
environment. But (i) this procedure cannot be
performed exactly and (ii) controlled perturba-
tion approaches do not exist. The second prob-
lem is related to a large number of the electron
sites (or degrees of freedom) in the LHC and
in the RC. This results in a multi-scale ET dy-
namics, so adequate coarse-grained procedures
must be used [2, 5].
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In this situation, it would be useful to in-
troduce a quantum exactly solvable (at least,
numerically) model, which (i) applies to the
ET in the photosynthetic complexes and (ii)
does not include the above mentioned restric-
tions on the interaction constants. This model
was introduced in our earlier publications [6, 7],
and used to describe (i) multi-scale ET dynam-
ics and (ii) nonphotochemical quenching by a
charge transfer state.
In this paper, we extend our approach [6, 7]

to the case in which the random protein en-
vironment can act both collectively and inde-
pendently on all light-sensitive electron sites
(pigments). Namely, for all electron sites, we
introduce both collective (correlated) and in-
dependent (uncorrelated) protein fluctuations,
modeled by random telegraph processes. Pro-
tein environments modeled by random pro-
cesses and by the thermal bath usually pro-
duce different long-time asymptotic behavior
for the ET dynamics, we consider that our ap-
proach is appropriate for the problems under
consideration. Note also that protein environ-
ments in living organisms, have both noisy and
thermal components [1, 8–16]. Uncorrelated
protein fluctuations can act on their neigh-
boring pigments as well as on other pigments
in the real photosynthetic organisms. Exper-
imentally, this can be verified by measuring
the corresponding correlation functions of the
protein fluctuations between different donor-
acceptor sites. The correlation properties of
protein fluctuations at different electron sites
can also be modeled and simulated numerically
using the standard molecular dynamics (MD)
approaches. The main results of our paper in-
clude:

• For rather arbitrary photosynthetic com-
plexes, we derived an exact closed sys-
tem of first-order linear differential equa-
tions, with constant coefficients, for the
averaged density matrix elements and for
their first moments, which describe the
quantum ET dynamics.

• We applied our model to determine the
quantum ET dynamics of the simplest
donor-acceptor system. Under some con-
ditions, we derived analytic expressions
for the ET rates, that are a generalization
of the Marcus-type expression for noisy
protein environment.

• We demonstrated numerically that the
uncorrelated fluctuations of the protein

environment can, under some conditions,
either increase or decrease the ET rates.

• We compared our exact solutions with
the corresponding approximate solutions,
and found the conditions of the applica-
bility of our perturbation approach.

The structure of the paper is the following. In
Section II, we describe our model, and derive
the closed system of differential equations for
the averaged density matrix elements and for
their moments. In Section III, we apply our
approach to a specific “donor-acceptor” sys-
tem, introduce the characteristic parameters,
and present the results of the numerical sim-
ulations for both exact and approximate solu-
tions. In the Conclusion, we summarize our
results and formulate some challenges for fu-
ture research. In the Supplementary Material
(SM), we present mathematical details of our
approach, and additional illustrations on the
action of correlated and uncorrelated protein
environment on the ET.

II. DESCRIPTION OF THE MODEL

Consider a quantum system which is de-
scribed by a time-dependent Hamiltonian,
H(t). We assume that this Hamiltonian de-
pends on some control parameters, λa. The
noise associated with fluctuations of these pa-
rameters is described by the functions, δλa(t),
that depend on the random variables, ξa(t).
Expanding the Hamiltonian to first order in
ξa(t), we have,

H(t) = H0 +
∑

a

Vaξa(t), (1)

where, H0, is the Hamiltonian of the system
under consideration, and Va is a matrix that
describes the interaction with noise. Using (1),
we obtain the following equations of motion for
the density matrix (~ = 1),

dρ

dt
= i[ρ,H0] + i[ρ,

∑

a

Va, ξa(t)]. (2)

For the density matrix averaged over noise this
yields,

d〈ρ〉
dt

= i[〈ρ〉,H0] + i
∑

a

[〈ρξa(t)〉,Va], (3)

where the average, 〈... 〉, is taken over the ran-
dom processes.
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To close this system of differential equations
(3), we assume that the fluctuations are pro-
duced by the independent random telegraph
processes (RTPs),

〈ξa(t)〉 = 0, (4)

〈ξa(t)ξb(t′)〉 = δabσ
2
ae

−2γaτ . (5)

Employing the differential formula for the
RTP [17],

( d

dt
+ 2γa

)

〈ξa(t)R[t; ξa(τ)]〉 =
〈

ξa(t)
d

dt
R[t; ξa(τ)]

〉

, (6)

where, R[t; ξa(τ)], is an arbitrary functional, we
obtain from Eq. (3) the following closed system
of differential equations:

d〈ρ〉
dt

=i[〈ρ〉,H0] + i
∑

a

σa[〈Xa〉,Va], (7)

d〈Xa〉
dt

=i[〈Xa〉,H0] + iσa[〈ρ〉,Va]

+ i
∑

b6=a

σb[〈Xab〉,Vb]− 2γa〈Xa〉, (8)

d〈Xab〉
dt

=i[〈Xab〉,H0] + iσa[〈Xb〉,Vb]

+ iσb[〈Xa〉,Vb]− 2(γa + γb)〈Xab〉,
(9)

where 〈Xa(t)〉 = 〈ξa(t)ρ(t)〉/σa, and 〈Xab(t)〉 =
〈ξa(t)ξb(t)ρ(t)〉/(σaσb) (a 6= b). Note, that by
using the properties of the RTP, one can show
that, 〈Xaa(t)〉 = 〈ρ(t)〉. Therefore, the diag-
onal elements of the matrix, 〈Xab(t)〉, do not
add new equations to the system (7) - (9).
In the rest of this paper, we use Eqs. (7)

– (9) to study the two-level “donor-acceptor”
system (TLS) embedded in a noisy protein en-
vironment. We assume that two uncorrelated
RTPs (generally, with different interaction con-
stants) act on both the donor and the acceptor.

III. TWO-LEVEL

“DONOR-ACCEPTOR” SYSTEM

For a simplicity of consideration, we apply
our approach to the TLS, with the following
Hamiltonian:

H̃ =
∑

n

εn|n〉〈n|+
∑

m 6=n

Vmn|m〉〈n|

+
∑

m,n

λmn(t)|m〉〈n|, m, n = 0, 1, (10)

FIG. 1: (Color online) The two-level “donor-
acceptor” system (TLS) interacting with two un-

correlated noisy environments, ξ1(t) and ξ2(t); λ
(a)
n

are the constants of interaction. The superscript,
a = 1, 2, indicates the noisy environment, and the
subscript, n = 1, 2, indicates the electron site.

where the functions, λmn(t), describes the in-
fluence of noise. When the matrix elements,
Vnm, are absent, the diagonal matrix elements,
λnn(t), are responsible for decoherence – the
decay of the non-diagonal density matrix ele-
ments. When λn6=m(t) = 0, relaxation in the
system occurs only if Vmn 6= 0. When Vmn = 0,
the off-diagonal matrix elements, λn6=m(t), lead
to “direct” relaxation processes.
In what follows, we restrict ourselves to diag-

onal noise effects produced by two independent
(uncorrelated) protein environments described
by the RTPs, ξ1,2(t). Then, one can write,

λmn(t) = δmn

∑2
a=1 λ

(a)
n ξa(t), where, λ

(a)
n , is

the interaction constant with the a-th environ-
ment, ξa(t), at the site, n (a, n = 1, 2). Note,
that in our approach, each noise can act on
both donor and acceptor sites. (See Fig. 1.)
The limit of a single collective noise, acting on
both the donor and acceptor sites, corresponds

to: λ
(1)
1,2 6= 0 and λ

(2)
1,2 = 0, or λ

(1)
1,2 = 0 and

λ
(2)
1,2 6= 0. The limit of two uncorrelated noises,

acting one on the donor and another on the

acceptor, corresponds to: λ
(2)
1 = λ

(1)
2 = 0, or

λ
(1)
1 = λ

(2)
2 = 0.

We consider the stationary telegraph noise
described by the random variable, ξa(t) =
ζa(t)− ζ̄a, so that,

〈ξa(t)〉 = 0, (11)

〈ξa(t)ξb(t′)〉 = δabχa(t− t′), (12)

where, χa(t − t′) = σ2
ae

−2γa|t−t′|, is the cor-
relation function of a-th noise, described by
the random variable, ξa(t). The average value,
〈ζa(t)〉 = ζ̄a, is included in the renormalization
of the electron energy at each site, n, in Eq.
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(10) as: εn → εn +
∑

a λ
(a)
n ζ̄a.

A. Integro-differential equations and rates

The dynamics of the TLS can be described
by the following system of integro-differential
equations [14, 18]. (For details see the Supple-
mentary Material.):

d

dt
〈ρ11(t)〉 =−

∫ t

0

K(t− t′)(〈ρ11(t′)〉 − 〈ρ22(t′)〉)dt′

+ iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉,
(13)

d

dt
〈ρ22(t)〉 =

∫ t

0

K(t− t′)(〈ρ11(t′)〉 − 〈ρ22(t′)〉)dt′

− iV21〈ρ12(0)〉+ iV12〈ρ21(0)〉,
(14)

where,

K(t− t′) =2V 2Φ(t− t′) cos(ε(t− t′)), (15)

ε = ε1 − ε2, and Φ(t − t′), is the characteristic
functional of the random process.

For the case of two uncorrelated environ-
ments described by the RTPs, one can show
that Φ(t) = Φ1(t)Φ2(t). The characteristic
functional, Φa(t), of each independent RTP, is
given by [19, 20],

Φa(t) = e−γat
(

cosh
(
√

γ2
a − d2a t

)

+
1

√

γ2
a − d2a

sinh
(
√

γ2
a − d2a t

)

)

, a = 1, 2, (16)

where, da = (λ
(a)
1 −λ

(a)
2 )σa, denotes the ampli-

tude of a-th noise.

FIG. 2: (Color online) Dependence of the rate, Γ, in
Eq. (26) on noise amplitude, d, and the correlation
rate, γ. Parameters: V12 = 5, ε = 30.

When the condition, |
∫∞

0 τK(τ)dτ | ≪ 1, is
satisfied, we can approximate Eqs. (13) and
(14) by the following system of ordinary differ-

ential equations,

d

dt
〈ρ11(t)〉 =−R(t)

(〈

ρ11(t)
〉

−
〈

ρ22(t)
〉)

+ iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉,
(17)

d

dt
〈ρ22(t)〉 =R(t)

(〈

ρ11(t)
〉

−
〈

ρ22(t)
〉)

− iV21〈ρ12(0)〉+ iV12〈ρ21(0)〉,
(18)

where R(t) =
∫ t

0 K(τ)dτ .
Assume that initially the off-diagonal compo-

nents of the density matrix (and, correspond-
ingly, their average values) are zero, ρ12(0) =
ρ21(0) = 0. Then, the exact solution of Eqs.
(17) and (18) can be written as:

〈

ρ11(t)
〉

=
1

2
+

(

〈ρ11(0)〉 −
1

2

)

e−2
∫

t

0
R(t′)dt′ ,

(19)

〈

ρ22(t)
〉

=
1

2
+

(

〈ρ22(0)〉 −
1

2

)

e−2
∫

t

0
R(t′)dt′ ,

(20)

where, 〈ρ11(0)〉 = ρ11(0) and 〈ρ22(0)〉 = ρ22(0).
As one can see, in the limit t → ∞, the presence
of noise results in equal populations in the TLS.
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The solution given by Eqs. (19) and (20)
can be approximated by replacing R(t) by its
asymptotic value, Γ/2 = limt→∞ R(t). The re-
sult is,

〈

ρ11(t)
〉

=
1

2
+

(

ρ11(0)−
1

2

)

e−Γt, (21)

〈

ρ22(t)
〉

=
1

2
+

(

ρ22(0)−
1

2

)

e−Γt. (22)

Two uncorrelated noises. When the environ-
ment is described by two uncorrelated RTPs,
the asymptotic rate, Γ, is given by (see the SM
for details),

Γ =
2|V12|2

α1 α2 (γ1 + γ2)
ℜ
(

(g1 g2 − α1 α2) (1 + iν) + (α1 g2 − g1 α2) (α1 − α2)

(α1 − α2)
2 − (1 + iν)

2

− (g1 g2 + α1 α2) (1 + iν) + (g1 α2 + α1 g2) (α1 + α2)

(α1 + α2)
2 − (1 + iν)

2

)

, (23)

where,

α1 =
√

g21 − µ2
1, α2 =

√

g22 − µ2
2, g1 =

γ1
γ1 + γ2

, g2 =
γ2

γ1 + γ2
,

ν =
ε

(γ1 + γ2)
, µ1 =

d
(1)
1 − d

(1)
2

γ1 + γ2
, µ2 =

d
(2)
1 − d

(2)
2

γ1 + γ2
. (24)

In Eq. (23), we used the following notation:

d
(a)
n = λ

(a)
n σa (a, n = 1, 2).

As was mentioned above, the condition of
the applicability of Eqs. (17) and (18) is:
|
∫∞

0
τK(τ)dτ | ≪ 1. To analyze this condition

analytically is rather complicated. Our numer-
ical calculations show the approximate condi-
tion of applicability is: |V1,2| . (γ1+γ2). Note,
that the same condition is also required for the
exact solutions of Eqs. (7)-(9) to be approx-
imated by the Eqs. (21) and (22). (See for
details the SM.)

Single collective diagonal noise. In the case
of a single collective noisy environment, acting
on both the donor and acceptor, the rate, Γ, in
Eq. (23) has the form,

Γ =
8V 2µ2

γ((µ2 − ν2)2 + 4ν2)
. (25)

Substituting µ = d/γ and ν = ε/γ, we obtain,

Γ =
8γ|V12|2d2

(d2 − ε2)2 + 4γ2ε2
, (26)

where, d = (λ1−λ2)σ, denotes the amplitude of
the noise. As one can see, the rate, Γ, reaches

its maximum,

Γmax =
4γ|V12|2

√

ε4 + 4γ2ε2 − ε2
, (27)

at the “resonance” amplitude of noise,

dres = (ε4 + 4γ2ε2)1/4. (28)

(See also [6, 7].) When the amplitude of noise
is far from the resonance value, the rate, Γ, be-
comes very small.
The “nonlinear” regime of electron transfer.

The dependence of the ET rate, Γ, in Eq. (26)
on the amplitude, d, of noise (the external ran-
dom force), is a nonlinear one. Indeed, the
amplitude, d, appears in Γ in both the numer-
ator and in the denominator. Suppose, that
the value of d is small (d ≪ ε). In this case,
Γ ≈ 8γ|V12|2/ε2(ε2 + 4γ2), and the rate is pro-
portional to the intensity of the external ran-
dom process. So, in this “linear” regime (small
d), there are no resonances in the Γ(d) behavior.
In the opposite case of strong noise (d ≫ ε), the
ET rate is: Γ ≈ 8γ|V12|2/d2, and it decreases as
d increases. We can say that the strong noise
does not allow the electron to move from the
donor to the acceptor, a kind of ET Zeno effect.
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FIG. 3: (Color online) Asymptotic rate, Γ, of Eq.
(23) vs. the dimensionless amplitudes of two uncor-
related noises, µ1, and µ2. Parameters: V12 = 3,
ε = 30. Top: γ1 = 5, γ2 = 15. Bottom:
γ1 = γ2 = 10.

Only for the intermediate noise amplitudes, d,
the “resonance” in the behavior of Γ(d) takes
place. In this sense, the regime of the ET is a
nonlinear one. A similar situation occurs when
two uncorrelated noises are applied to the sys-
tem. In this case, two “interacting nonlinear
resonances” occur.
There are two limiting cases in which the ex-

pression for Γmax can be simplified. (1) ε ≫ 2γ.
In this case, Γmax ≈ 2|V12|2/γ. (2) ε ≪ 2γ. In
this case, Γmax ≈ 2|V12|2/ε. An approximate
condition for applicability of Eq. (26) for the
rate, is: |V12| . γ, d.

B. Results of numerical simulations

In the numerical simulations, it is convenient
to measure the energy parameters in units of
ps−1, while time is measured in ps. Then, the

(a)

(b)

FIG. 4: (Color online) Strongly coupled dimer
(µd = 1). Time dependence (in ps) of the density
matrix components: ρ11(t) (blue) and ρ22(t) (red).
Parameters: V12 = 30, ε1 = 60, ε2 = 30, γ1 = 10,

γ2 = 15. (a) d
(1)
1 = 10, d

(1)
2 = 10, d

(2)
1 = 0, d

(2)
2 = 0,

(b) d
(1)
1 = 10, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10. Initial

conditions: ρ11(0) = 1, ρ22(0) = 0.

energy ε = 1ps−1 ≈ 0.66meV.

In Fig. 2, we show the rate, Γ, defined by
Eq. (26) (for a single noise), as a function of
the amplitude of noise, d, and the correlation
rate of noise (inverse correlation time), γ. As
one can see, Γ reaches its maximum value at the
resonance amplitude of noise, dres, given by Eq.
(28). At the same time, as one can see from Eq.
(28), for a given value of the redox potential, ε,
the value of Γmax depends of γ. This behavior
is demonstrated in Fig. 2, for ε = 50, |V1,2| = 5,
and for 10 6 γ 6 50. One case see, that for
these parameters, Γmax . 6ps−1.

For two uncorrelated noises, the rate, Γ, in
Eq. (23), is shown in Fig. 3, as a function
of two dimensionless amplitudes of noise, µ1

and µ2. As one can see, two “interacting” res-
onances are present. The amplitudes of these
resonances depend on the values of µ1,2. These
resonances can be either non-symmetric, as in



7

(a)

(b)

FIG. 5: (Color online) Time dependence (in ps) of
the density matrix components: ρ11(t) (blue) and
ρ22(t) (red). Parameters: V12 = 10, ε1 = 60, ε2 =

30, γ1 = 10, γ2 = 15. (a) d
(1)
1 = 10, d

(1)
2 = 10,

d
(2)
1 = 0, d

(2)
2 = 0, (b) d

(1)
1 = 10, d

(1)
2 = 0, d

(2)
1 = 0,

d
(2)
2 = 10. Initial conditions: ρ11(0) = 1, ρ22(0) =

ρ12(0) = 0.

Fig. 3 (top), for different correlation rates,
γ1 = 5 and γ2 = 15, or symmetric, as in Fig. 3
(bottom), for equal correlation rates, γ1,2 = 10.
Note, that in both cases, γ1+γ2 = 20. For these
chosen parameters, Γmax . 3.6ps−1.
Weakly and strongly coupled dimers. The

“donor-acceptor” system shown in Fig. 1, rep-
resents a coupled dimer (realized, for example,
by two coupled chlorophyll molecules.) This
dimer can be either weakly or strongly coupled.
Let us introduce the parameter, µd = |V12/ε|.
It is easy to see that when µd ≪ 1, both eigen-
states, |u+〉 and |u−〉, of the Hamiltonian, H0,
in (2), become close to the unperturbed states,
|u1〉 and |u2〉, when V12 = 0. In this case, we
call the dimer “weakly coupled”. The dimer is
called “strongly coupled”, when the value of µd

is not too small. We can say that the dimer is
strongly coupled when, µd & 1.
In Figs. 4 - 7, we present the results of the

numerical simulations of the dynamical behav-

(a)

(b)

FIG. 6: (Color online) Weakly coupled dimer (µd =
0.1). Time dependence (in ps) of the density matrix
components: ρ11(t) (blue) and ρ22(t) (red). Param-
eters: V12 = 3, ε1 = 60, ε2 = 30, γ1 = 10, γ2 = 15.

(a) d
(1)
1 = 10, d

(1)
2 = 10, d

(2)
1 = 0, d

(2)
2 = 0, (b)

d
(1)
1 = 10, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10. Initial

conditions: ρ11(0) = 1, ρ22(0) = rho12(00 = 0.

ior of the system shown in Fig. 1, for different
parameters, and for both correlated and un-
correlated noisy environments. All simulations
were performed using the exact system of equa-
tions (7) - (9). In Fig. 7, we also compare the
exact results with the corresponding approxi-
mate solutions. (In the SM, more details on the
comparison of the exact and approximate solu-
tions are presented.) We also consider weakly
and strongly coupled dimers. For simplicity,
in all cases, the initial conditions were chosen
when the donor was populated: ρ11(0) = 1,
ρ22(0) = ρ12(0) = 0.
In Fig. 4a, a single correlated noise, corre-

sponding to a = 1, is applied to a strongly
coupled dimer (µd = 1). In this case, both
amplitudes of noise, acting on donor and ac-

ceptor, are equal, d
(1)
1 = d

(1)
2 = 10. So, the

effective noise, acting on the system, is absent:

d(1) = d
(1)
1 −d

(1)
2 = 0. This regime is easy to un-

derstand, as the matrix, Va, in Eq. (1) becomes
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FIG. 7: (Color online) Weakly coupled dimer (µd =
0.1). Time dependence (in ps) of the density matrix
components: ρ11(t) (blue and green curves), ρ22(t)
(red and orange curves). Choice of parameters:
V12 = 3, ε1 = 60, ε2 = 30, γ1 = 5, γ2 = 15. Blue

and red curves: d
(1)
1 = 20, d

(1)
2 = −10, d

(2)
1 = 0,

d
(2)
2 = 0, Γ = 3.6, (µ1 = 1.5;µ2 = 0). Green

and orange curves: d
(1)
1 = 20, d

(1)
2 = 0, d

(2)
1 = 0,

d
(2)
2 = −10, Γ = 0.73, (µ1 = 1;µ2 = 0.5). Solid

curves correspond to the solutions of the exact Eqs.
(7)-(9). Dashed curves correspond to the approxi-
mate solutions given by Eqs. (21) and (22). Initial
conditions: ρ11(0) = 1, ρ22(0) = ρ12(0) = 0.

the unit matrix. In this case, the dynamics of
the system exhibits Rabi oscillations. Because
the matrix element is equal to the redox po-
tential, V1,2 = ε = 30, the Rabi oscillations
have large amplitude. The situation changes
significantly when two uncorrelated noises, with

the same amplitudes, d
(1)
1 = 10 (applied to the

donor) and d
(2)
2 = 10 (applied to the acceptor),

influence the same dimer. (See Fig. 4b.) In
this case, the dynamics experiences rapid relax-
ation, and saturates (ρ1,2(t) → 1/2) at approxi-
mately, ts ≈ 2ps. We can conclude, that in this
case, two uncorrelated noises (environments),
with equal amplitudes, are more effective in as-
sisting the ET than a single correlated noise
with the same amplitude. Similar results are
shown in Fig. 5, for the intermediately coupled
dimer (µd = 1/3). In this case, the amplitude
of the Rabi oscillations in Fig. 5a decreases,
and the saturation time in Fig. 5b increases,
ts ≈ 6ps. In both cases, shown in Fig. 4b and
Fig. 5b, the electron transfer dynamics is ac-
companied by coherent oscillations of the pop-
ulations, ρ11(t) and ρ22(t). In Fig. 6, the case
of a weakly coupled dimer is demonstrated, for
µd = 0.1, and for the same amplitudes of the
noisy environments as in Figs. 4 and 5. As

one can see, the amplitude of the Rabi oscil-
lations in Fig. 6a decreases significantly (less
than 0.05), and the saturation time of the ET
in Fig. 6b increases significantly, ts ≈ 35ps.
The populations, ρ11(t) and ρ22(t), do not ex-
perience visible oscillations in this case.
In Fig. 7, we show the dynamics of the ET

for two noises, which act on both donor and
acceptor, but with different amplitudes and in-
teraction constants. Solid curves correspond to
the solutions of the exact Eqs. (7)-(9). Dashed
curves correspond to the approximate solutions
given by Eqs. (21) and (22). Initial conditions
are the same for all cases presented in Fig. 7:
ρ11(0) = 1, ρ22(0) = ρ12(0) = 0. Blue and
red curves correspond to the noise amplitudes:

d
(1)
1 = 20, d

(1)
2 = −10, d

(2)
1 = 0, d

(2)
2 = 0. In

this case, in even though two noises are present
in the system, the second noise (with a = 2)
has zero constants of interaction with both the
donor and acceptor: λ

(2)
1,2 = 0. So, effectively

only one collective noise (with a = 1) acts on
both the donor and acceptor. The dimension-
less amplitudes of noise are: (µ1 = 1.5;µ2 = 0),
and the ET rate is: Γ = 3.6.
Green and orange curves correspond to the

amplitudes of noise: d
(1)
1 = 20, d

(1)
2 = 0,

d
(2)
1 = 0, d

(2)
2 = −10. In these case, both

noises act on the system. The dimensionless
amplitudes of noise are: (µ1 = 1;µ2 = 0.5),
and the ET rate is: Γ = 0.73. The presented
ET rates correspond to the results shown in
Fig. (3). As one case see, for chosen param-
eters, the results of the approximate solutions
(dashed curves) are in good agreement with the
results of exact equations (solid curves). As our
results demonstrate, the saturation time de-
pends significantly on (i) the presence of collec-
tive or independent (uncorrelated) noises acting
on the donor and acceptor, (ii) the amplitude of
noises, and (iii) the interaction constants with
noises. Indeed, for parameters chosen in Fig.
7, for blue and red curves, the saturation time
is: tsat ≈ 1.8ps. For parameters chosen for
green and orange curves, the saturation time
is: tsat ≈ 8ps.

IV. CONCLUSION

When modeling the primary quantum exci-
ton transfer processes in photosynthetic com-
plexes, two major problems occur. The first
is related to strong pigments-protein interac-
tions. The second problem is related to the
large number of pigments (or light-sensitive
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sites) in the light-harvesting complexes. This
results in a multi-scale electron transfer dynam-
ics and in the necessity to develop adequate
coarse-grained procedures. Moreover, the num-
ber, N , of light-sensitive pigments in the sub-
complexes of plants and algae is neither small
or large, but rather of an intermediate value,
N ≈ 10 − 20 [1, 2]. Then, it is difficult to ap-
ply the well-developed methods from the solid
state physics which are used either for rare
impurities or for systems with electron band
structures. In this situation, it is useful to de-
sign an exactly solvable (at least, numerically)
quantum model which can be used to describe
the electron transfer in these complex biolog-
ical systems. Such a model is introduced in
this paper, for rather general photosynthetic
complexes, and for any values of the “pigment-
protein” interaction constants. We considered
both regimes of correlated and uncorrelated
random protein fluctuations acting on differ-
ent pigments (electron sites). Both of these
regimes can be realized in real photosynthetic
organisms. We demonstrated that the uncorre-
lated protein fluctuations can either increase or
decrease the electron transfer rates. They can
also modify the whole electron transfer dynam-
ics. We also derived analytical expressions for
the ET rates and for the evolution of the den-
sity matrix, which approximate the exact solu-
tions for large time-intervals for a wide range
of parameters.
Our model can easily be applied for many

concrete light-harvesting complexes and reac-

tion centers. The solutions which follow from
our model can be used for developing adequate
coarse-grained procedures, and for comparison
with the results of different approximations and
perturbation approaches. Our results can also
be used for engineering the protein environment
to achieve desired properties for the ET dynam-
ics. In order to verify the properties of the pro-
tein environment, standard molecular dynam-
ics (MD) methods can be used to simulate the
time-dependent correlation functions between
different electron sites. The generalization of
our approach for thermal protein environments
is one focus of our future research. One way
to do this, is to develop a perturbation theory
not by the constants of interactions between the
electron sites and the protein fluctuations, but
by the matrix elements of the interactions be-
tween different electron sites. This research is
now in progress.
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I. INTEGRO-DIFFERENTIAL EQUATIONS AND RATES

A. Two-level system with a single noisy environment

We start with the simplified model of two-level system (TLS) with a stationary diagonal noise,
described by a random variable, ξ(t). Present the Hamiltonian of the TLS as,

H =(E1 + λ1ξ(t))|1〉〈1|+ (E2 + λ2ξ(t))|2〉〈2| + V12|1〉〈2|+ V21|2〉〈1|, (1)

where, λ1,2, are the interaction constants. Using (1), we obtain the following equations for the
density matrix elements (~ = 1),

ρ̇11(t) =iV21ρ12(t)− iV12ρ21(t)), (2)

ρ̇22(t) =iV12ρ21(t)) − iV21ρ12(t), (3)

ρ̇12(t) =− i(ε+Dξ(t))ρ12(t) + iV12(ρ11(t)− ρ22(t)), (4)

ρ̇21(t) =i(ε+Dξ(t))ρ21(t)− iV21(ρ11(t)− ρ22(t)), (5)

where ε = E1 − E2 and D = λ1 − λ2.
After averaging over the random process, we obtain,

d

dt
〈ρ11(t)〉 =iV21〈ρ12(t)〉 − iV12〈ρ21(t)〉, (6)

d

dt
〈ρ22(t)〉 =iV12〈ρ21(t)〉 − iV21〈ρ12(t)〉, (7)

d

dt
〈ρ12(t)〉 =− iε〈ρ12(t)〉 − iD〈ξ(t)ρ12(t)〉+ iV12(〈ρ11(t)〉 − 〈ρ22(t)〉), (8)

d

dt
〈ρ21(t)〉 =iε〈ρ21(t)〉 + iD〈ξ(t)ρ21(t)〉 − iV21(〈ρ11(t)〉 − 〈ρ22(t)〉), (9)

where, 〈...〉, denotes the averaging over the random process. Due to the terms, 〈ξ(t)ρ12(t)〉 and
〈ξ(t)ρ21(t)〉, in the RHS of Eqs. (6)-(9), the obtained system of differential equations in unclosed.
When the noise is described by the random telegraph process (RTP), one can obtain the closed

system of differential equations for averaged variables [1, 2]. Let χ(τ) = σ2e−2γτ be a correlation
function of the RTP. Employing the differential formula [1],

( d

dt
+ 2γ

)

〈ξa(t)R[t; ξ(τ)] =
〈

ξ(t)
d

dt
R[t; ξ(τ)]

〉

, (10)
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where, R[t; ξ(τ)], is an arbitrary functional, and after some algebra, we obtain the following closed
system of differential equations:

d

dt
〈ρ11(t)〉 =iV21〈ρ12(t)〉 − iV12〈ρ21(t)〉, (11)

d

dt
〈ρ22(t)〉 =iV12〈ρ21(t)〉 − iV21〈ρ12(t)〉, (12)

d

dt
〈ρ12(t)〉 =− iε〈ρ12(t)〉 − iD〈ρξ12(t)〉 + iV12(〈ρ11(t)〉 − 〈ρ22(t)〉), (13)

d

dt
〈ρ21(t)〉 =iε〈ρ21(t)〉 + iD〈ρξ21(t)〉 − iV21(〈ρ11(t)〉 − 〈ρ22(t)〉), (14)

d

dt
〈ρξ11(t)〉 =iV21〈ρξ12(t)〉 − iV12〈ρξ21(t)〉 − 2γ〈ρξ11(t)〉, (15)

d

dt
〈ρξ22(t)〉 =iV12〈ρξ21(t)〉 − iV21〈ρξ12(t)〉 − 2γ〈ρξ22(t)〉, (16)

d

dt
〈ρξ12(t)〉 =− iε〈ρξ12(t)〉 − iDσ2〈ρ12(t)〉+ iV12(〈ρξ11(t)〉 − 〈ρξ22(t)〉) − 2γ〈ρξ12(t)〉, (17)

d

dt
〈ρξ21(t)〉 =iε〈ρξ21(t)〉 + iDσ2〈ρ21(t)〉 − iV21(〈ρξ11(t)〉 − 〈ρξ22(t)〉)− 2γ〈ρξ21(t)〉, (18)

where 〈ρξij(t)〉 = 〈ξ(t)ρij(t)〉.

Integro-differential equations and rates

Here we obtain the approximate system of integro-differential equations for the averaged com-
ponents of the density matrix. By integrating Eqs. (4) and (5), and taking averaging over the
random process, we obtain,

〈ρ12(t)〉 =iV12

∫ t

0

〈eiϕ(t)e−iϕ(t′)e−iε(t−t′)
(

ρ11(t
′)− ρ22(t

′)
)

〉dt′ + 〈ρ12(0)〉, (19)

〈ρ21(t)〉 =− iV21

∫ t

0

〈e−iϕ(t)eiϕ(t′)e−iε(t−t′)
(

ρ11(t
′)− ρ22(t

′)
)

〉dt′ + 〈ρ21(0)〉, (20)

where ϕ(t) = D
∫ t

0 ξ(t
′)dt′.

To proceed further, one should split the correlations in the RHS of Eqs. (19) and (20). Let,
F (t; ξ(τ)), be an arbitrary functional of the random process, ξ(τ). We assume that the following
relation for splitting of correlations can be used,

〈

eiϕ(t)e−iϕ(t′)F (t′; ξ(τ))
〉

≈ 〈eiϕ(t)e−iϕ(t′)
〉〈

F (t′; ξ(τ))
〉

= Φ(t− t′)
〈

F (t′; ξ(τ))
〉

, (21)

where, Φ(t− t′) = 〈eiϕ(t)e−iϕ(t′)
〉

, is the characteristic functional of the random process.
After splitting of correlations in Eqs. (19) - (20), we obtain,

〈ρ12(t)〉 =iV12

∫ t

0

Φ(t− t′)e−iε(t−t′)
(

〈ρ11(t′)〉 − 〈ρ22(t′)〉
)

dt′ + 〈ρ12(0)〉, (22)

〈ρ21(t)〉 =− iV21

∫ t

0

Φ(t− t′)eiε(t−t′)
(

〈ρ11(t′)〉 − 〈ρ22(t′)〉
)

dt′ + 〈ρ21(0)〉. (23)

Substituting these results into Eqs. (6) - (9), we obtain the following system of integro-differential
equations:

d

dt
〈ρ11(t)〉 =−

∫ t

0

K(t− t′)(〈ρ11(t′)〉 − 〈ρ22(t′)〉)dt′ + iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉, (24)

d

dt
〈ρ22(t)〉 =

∫ t

0

K(t− t′)(〈ρ11(t′)〉 − 〈ρ22(t′)〉)dt′ − iV21〈ρ12(0)〉+ iV12〈ρ21(0)〉, (25)
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where,

K(t− t′) = 2|V12|2Φ(t− t′) cos(ε(t− t′)). (26)

When the condition, |
∫∞

0 τK(τ)dτ | ≪ 1, is satisfied, we can approximate Eqs. (24) - (25) by
the following system of ordinary differential equations,

d

dt
〈ρ11(t)〉 =−R(t)(〈ρ11(t)〉 − 〈ρ22(t)〉) + iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉, (27)

d

dt
〈ρ22(t)〉 =R(t)(〈ρ11(t)〉 − 〈ρ22(t)〉)− iV21〈ρ12(0)〉+ iV12〈ρ21(0)〉, (28)

where, R(t) =
∫ t

0
K(τ)dτ . By excluding, 〈ρ22(t)〉, we obtain,

d

dt
〈ρ11(t)〉 =− 2R(t)〈ρ11(t)〉 +R(t) + iV21∠ρ12(0)〉 − iV12〈ρ21(0)〉. (29)

The solution of this equation, with the initial conditions, ρ11(0) = 〈ρ11(0)〉 = 1, ρ12(0) =
〈ρ12(0)〉 = 0, is,

〈ρ11(t)〉 =
1

2
+

1

2
e−2

∫
t

0
R(τ)dτ . (30)

Asymptotically, as t → ∞, we obtain,

〈ρ11(t)〉 =
1

2
+

1

2
e−Γt, (31)

where Γ = 2 limt→∞ R(t).
To proceed further, one needs to know the explicit expression for the characteristic functional,

Φ(t− t′). For the random telegraph noise, Φ(t), obeys the following differential equation [1]:

d2

dt2
Φ(t) + 2γ

d

dt
Φ(t) +D2σ2Φ(t) = 0. (32)

Its solution is given by [1, 2],

Φ(t) = e−γt
(

cosh
(

√

1− µ2 γt
)

+
1

√

1− µ2
sinh

(

√

1− µ2 γt
)

)

, (33)

where µ = Dσ/γ.

Further, it is convenient to define a complex kernel, K̃(t) = |V12|2Φ(t)e−iεt. From here it follows:

R(t) = 2ℜ(R̃(t)), where R̃(t) =
∫ t

0
K̃(s)ds. Employing (49), we find,

R̃(t) =
V 2

γ

∫ γt

0

e−(1+iν)τ
(

cosh
(

√

1− µ2 τ
)

+
1

√

1− µ2
sinh

(

√

1− µ2 τ
)

)

dτ (34)

where ν = ε/γ. Performing integration, we obtain,

R̃(t) =
V 2

γ(µ2 − ν2 + 2iν)

{

2 + iν − e−(1+iν)γt
(

(2 + iν) cosh(
√

1− µ2γt)

+
(

√

1− µ2 +
1 + iν
√

1− µ2

)

sinh(
√

1− µ2γt)
)}

, (35)

where ν = ε/γ. This yields,

R(t) =ℜ
{

2V 2

γ(µ2 − ν2 + 2iν)

(

2 + iν − e−(1+iν)γt
(

(2 + iν) cosh(
√

1− µ2γt)

+
(

√

1− µ2 +
1 + iν
√

1− µ2

)

sinh(
√

1− µ2γt)
)

)}

. (36)
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(a) (b)

FIG. 1: (Color online) Left panel. Dependence of Z on (µ, ν). Right panel. Dependence of Z on µ, for
different values of ν: ν = 0.25 (black curve), ν = 0.5 (green curve), ν = 1 (blue curve), ν = 2 (orange
curve), ν = 3 (red).

Using Eq. (36), we obtain the asymptotic rate, Γ,

Γ =
t→∞−→ 8V 2µ2

γ((µ2 − ν2)2 + 4ν2)
=

8γV 2D2σ2

(D2σ2 − ε2)2 + 4γ2ε2
. (37)

In two limiting cases, Dσ ≪ ε (weak noise) and Dσ ≫ ε (strong noise), we obtain,

Γ =
8γV 2D2σ2

ε2(ε2 + 4γ2)
, Dσ ≪ ε, (38)

Γ =
8γV 2D2σ2

D4σ4 + 4γ2ε2
, Dσ ≫ ε. (39)

Conditions for validity of the approximation

When the condition, |
∫∞

0 τK(τ)dτ | ≪ 1, is satisfied, we can approximate Eqs. (24) and (25) by
the following system of ordinary differential equations,

d

dt
〈ρ11(t)〉 =−R(t)(〈ρ11(t)〉 − 〈ρ22(t)〉) + iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉, (40)

d

dt
〈ρ22(t)〉 =R(t)(〈ρ11(t)〉 − 〈ρ22(t)〉)− iV21〈ρ12(0)〉+ iV12〈ρ21(0)〉, (41)

One can show that the condition for validity of this approximation can be presented as:
∣

∣

∣

∣

ℑ
(

∂

∂ε
Γ̃

)∣

∣

∣

∣

≤
∣

∣

∣

∣

∂

∂ε
Γ̃

∣

∣

∣

∣

≪ 1, (42)

where Γ̃ = 2
∫∞

0
tK̃(t)dt. Introducing the dimensionless parameters, a = V/γ and ν = ε/γ, we

rewrite Eq. (42) as, a2 ≪ minZ, where Z = a2/|∂Γ̃/∂ν|.
To find the function, Z, we use Eq. (36), which gives,

Γ̃ =
2|V12|2

γ
· 2µ

2 + iν((µ2 − ν2)− 4)

(µ2 − ν2)2 + 4ν2
. (43)
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(a) (b)

(c) (d)

FIG. 2: (Color online) Solution of Eq. (29) (solid curves) and Eqs. (6) - (16) (dashed
curves). From the top to the bottom: (a) (ε,D, γ) = [(10, 1, 2), (10, 5, 2), (10, 10, 2)] (blue,
red), (ε,D, γ) = [(10, 10, 0.1)] (green, orange; here, the condition for applicability, V ≪

γ, is violated); (b) (ε,D, γ) = [(10, 1, 20), (10, 5, 20), (10, 10, 40), (10, 10, 20)]; (c) (ε,D, γ) =
[(40, 5, 10), (20, 5, 10), (10, 5, 10), (5, 5, 10), (2, 5, 10)]. In the cases (a) - (c), we chose, V = σ = 1. (d)
(D, γ) = [(5, 10), (10, 10), (20, 10), (40, 10)], V = 10, ε = 60, σ = 1.

After some algebra we obtain,

Z =
(µ2 − ν2)2 + 4ν2

2
√

16ν2 + (µ2 + ν2 − 4)2
. (44)

In Fig. 1, the function, Z(µ, ν), is shown. As one can see, the minimum of the function, Z(µ, ν),
is achieved when, µ ≈ ν. Using this result, we obtain the following estimate,

|V12|
γ

≪
√
2 ν

(ν4 + 4)1/4
. (45)

It follows from (45) (see also Fig. 1b), that for ν ≥ 1 the condition for validity of the approxi-
mation, leading to the differential equations (40) and (41), can be roughly estimated as: V ≪ γ.

In Fig. 2, we compare the numerical solutions of the approximate Eq. (29) (dashed curves)
with the corresponding solutions of the exact Eqs. (11) - (18) (solid curves). When V . γ,
one can observe a good agreement between the both solutions. However, when the condition of
applicability, V ≪ γ, is violated, one has a disagreement between the approximate and exact
solutions. (See green and orange curves in Fig. 2a.)
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(a) (b)

FIG. 3: (Color online) Dependence of Z on (µ1, µ2) (ν = 1). Left panel: g1 = 0.25, g2 = 0.75. Right panel:
g1 = g2 = 0.5.

II. TWO UNCORRELATED NOISES

In the case of two uncorrelated RTPs, the behavior of the system can be described by the same
approximate system of differential equation, as in the case of a single noise,

d

dt
〈ρ11(t)〉 =−R(t)(〈ρ11(t)〉 − 〈ρ22(t)〉) + iV21〈ρ12(0)〉 − iV12〈ρ21(0)〉, (46)

d

dt
〈ρ22(t)〉 =R(t)(〈ρ11(t)〉 − 〈ρ22(t)〉)− iV21〈ρ12(0)〉+ iV12〈ρ21(0)〉, (47)

where, R(t) =
∫ t

0
K(τ)dτ , and,

K(t− t′) = 2|V12|2Φ(t− t′) cos(ε(t− t′)). (48)

The only difference is that now the characteristic functional, Φ(t), is presented as a product:
Φ(t) = Φ1(t)Φ2(t). The characteristic functional, Φa(t), of each independent RTP, is given by
[2, 3],

Φa(t) = e−γat
(

cosh
(
√

γ2
a − d2a t

)

+
1

√

γ2
a − d2a

sinh
(
√

γ2
a − d2a t

)

)

, a = 1, 2, (49)

where, da = (λ
(a)
1 − λ

(a)
2 )σa, denotes the amplitude of the a-th noise.

Computation of the asymptotic rate, Γ = 2 limt→∞ R(t), yields,

Γ =
2|V12|2

α1 α2 (γ1 + γ2)
ℜ
(

(g1 g2 − α1 α2) (1 + iν) + (α1 g2 − g1 α2) (α1 − α2)

(α1 − α2)
2 − (1 + iν)

2

− (g1 g2 + α1 α2) (1 + iν) + (g1 α2 + α1 g2) (α1 + α2)

(α1 + α2)
2 − (1 + iν)

2

)

, (50)

where

α1 =
√

g21 − µ2
1, α2 =

√

g22 − µ2
2, g1 =

γ1
γ1 + γ2

, g2 =
γ2

γ1 + γ2
,

µ1 =
d11 − d12
γ1 + γ2

, µ2 =
d21 − d22
γ1 + γ2

. (51)
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The condition for validity of the approximation of integro-differential equations by the system of
differential equations is the same as in the case of a single noise: |

∫∞

0
τK(τ)dτ | ≪ 1. Performing

the same procedures, as in the case of a single noise, we obtain,

|V12|
γ1 + γ2

≪ minZ, (52)

where Z = a2/|∂Γ̃/∂ν|, and

Γ̃ =
1

α1 α2

(

(g1 g2 − α1 α2) (1 + iν) + (α1 g2 − g1 α2) (α1 − α2)

(α1 − α2)
2 − (1 + iν)

2

− (g1 g2 + α1 α2) (1 + iν) + (g1 α2 + α1 g2) (α1 + α2)

(α1 + α2)
2 − (1 + iν)

2

)

, (53)

(a) (b)

(c) (d)

FIG. 4: (Color online) Dashed curves: solution of the approximate Eq. (54). Solid curves: solutions of the
exact system of differential equations, for two uncorrelated RTPs. Parameters: ε = 30,, γ1 = 10, γ2 = 15.

(a) V12 = 5, d
(1)
1 = 30, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10, (b) V12 = 3, d

(1)
1 = 30, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10,

(c) V12 = 3, d
(1)
1 = 10, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10, (d) V12 = 20, d

(1)
1 = 30, d

(1)
2 = 0, d

(2)
1 = 0, d

(2)
2 = 10.

Initial conditions: ρ11(0) = 1, ρ22(0) = 0.

In Fig. 3, the function, Z(µ1, µ2), is shown. As one can see, the minimum of the function,
Z(µ, ν), is achieved when µ1 ≈ µ2. It follows from here (see also Fig. 1b) that for, ν ≥ 1, the
condition for validity of the approximation, leading to the differential equations (40) and (41), can
be roughly estimated as: V ≪ γ1 + γ2.
In Fig. 4, we compare the numerical solutions (dashed curves) of the approximate equation,

〈ρ11(t)〉 =
1

2
+

1

2
e−Γt, (54)

with the corresponding solutions (solid curves) of the exact Eqs. (8) - (10) from the main text
of our paper. When V . γ1 + γ2, one can observe a good agreement between the exact and
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approximate solutions. However, when the condition of applicability, V ≪ γ1+ γ2, is violated, one
has a disagreement between the two solutions. (See green and red curves in Fig. 4d.)
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